- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000002010000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Dalley, Rachel (3)
-
Bae, J Alexander (2)
-
Bodor, Agnes L (2)
-
Brittain, Derrick (2)
-
Buchanan, JoAnn (2)
-
Bumbarger, Daniel J (2)
-
Castro, Manuel A (2)
-
Collman, Forrest (2)
-
Dorkenwald, Sven (2)
-
Elabbady, Leila (2)
-
Halageri, Akhilesh (2)
-
Jarsky, Tim (2)
-
Jia, Zhen (2)
-
Jordan, Chris (2)
-
Joyce, Emily (2)
-
Kapner, Daniel (2)
-
Kemnitz, Nico (2)
-
Kinn, Sam (2)
-
Lee, Kisuk (2)
-
Li, Kai (2)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 10, 2026
-
Bodor, Agnes L; Schneider-Mizell, Casey M; Zhang, Chi; Elabbady, Leila; Mallen, Alex; Bergeson, Andi; Brittain, Derrick; Buchanan, JoAnn; Bumbarger, Daniel J; Dalley, Rachel; et al (, bioRxiv)Summary The neocortex is one of the most critical structures that makes us human, and it is involved in a variety of cognitive functions from perception to sensory integration and motor control. Composed of repeated modules, or microcircuits, the neocortex relies on distinct cell types as its fundamental building blocks. Despite significant progress in characterizing these cell types1–5, an understanding of the complete synaptic partners associated with individual excitatory cell types remain elusive. Here, we investigate the connectivity of arguably the most well recognized and studied excitatory neuron in the neocortex: the thick tufted layer 5 pyramidal cell6–10also known as extra telencephalic (ET)11neurons. Although the synaptic interactions of ET neurons have been extensively explored, a comprehensive characterization of their local connectivity remains lacking. To address this knowledge gap, we leveraged a 1 mm3electron microscopic (EM) dataset. We found that ET neurons primarily establish connections with inhibitory cells in their immediate vicinity. However, when they extend their axons to other cortical regions, they tend to connect more with excitatory cells. We also find that the inhibitory cells targeted by ET neurons are a specific group of cell types, and they preferentially inhibit ET cells. Finally, we observed that the most common excitatory targets of ET neurons are layer 5 IT neurons and layer 6 pyramidal cells, whereas synapses with other ET neurons are not as common. These findings challenge current views of the connectivity of ET neurons and suggest a circuit design that involves local competition among ET neurons and collaboration with other types of excitatory cells. Our results also highlight a specific circuit pattern where a subclass of excitatory cells forms a network with specific inhibitory cell types, offering a framework for exploring the connectivity of other types of excitatory cells.more » « less
-
Hodge, Rebecca D.; Bakken, Trygve E.; Miller, Jeremy A.; Smith, Kimberly A.; Barkan, Eliza R.; Graybuck, Lucas T.; Close, Jennie L.; Long, Brian; Johansen, Nelson; Penn, Osnat; et al (, Nature)
An official website of the United States government
